TO MARK PROGRESS # Controlled Quality # CATALOG NO. 55 SEAMLESS WELDING FITTINGS FORGED STEEL FLANGES LARGE DIAMETER FLANGES LONG WELDING NECKS FORGED STEEL FITTINGS # LADISH Controlled Quality STAINLESS AND ALLOY FITTINGS TO MARK PROGRESS FORGED STEEL FLANGES LARGE O. D. & TEMA FLANGES, LONG NECKS, ROLLED RINGS FORGED STEEL FITTINGS STAINLESS AND ALLOY FITTINGS ENGINEERING AND TECHNICAL DATA GENERAL INDEX AND PART NUMBERS # LADISH IS PREPARED TO SUPPLY YOUR **CARBON STEELS** CARBON-MOLYBDENUM STEELS SEAMLESS WELDING FITTINGS ... STANDARD CHROMIUM-MOLYBDENUM STEELS **NICKEL STEELS** FORGED STEEL FLANGES ... 150 POUNDS CHROMIUM-NICKEL STEELS CHROMIUM-SILICON-MOLYBDENUM FITTINGS...SCREWED WROUGHT IRON CHROMIUM TYPE STAINLESS CHROMIUM-NICKEL STAINLESS MOLYBDENUM-TYPE STAINLESS WROUGHT ALUMINUM **ALUMINUM-COPPER ALLOYS** 226 LARGE DIAMETER, TEMA & LONG WELDING NECK FLANGES LADISH CAN PRODUCE FITTINGS IN A WIDE RANGE OF SIZES # COMPLETE MATERIAL REQUIREMENTS **ALUMINUM-MANGANESE ALLOYS** DEOXIDIZED COPPER ARSENICAL COPPER **RED AND YELLOW BRASSES** FORGING BRASS **EVERDUR BRONZE** SILICON BRONZE WROUGHT NICKEL MANGANESE BRONZE NICKEL-COPPER ALLOYS INCONEL MONEL THROUGH DOUBLE EXTRA STRONG THROUGH 2500 POUNDS PRESSURE RATING SOCKET-WELDING...2000 THROUGH 6000 POUNDS CONSIDERATIONS AFFECTING MATERIAL SELECTION In addition to those ever-present factors of pressure and temperature, today's piping engineer is frequently involved in design problems which are further complicated by such considerations as corrosion, contamination and catalytic action between the piping material and fluids or gases being conveyed through the lines. Recent advances in both metallurgy and forging techniques have made available for these problems a wide range of ferrous and non-ferrous piping metals together with many special-duty alloys of each. Now by careful selection of the proper material for pipe and fittings it is possible to meet more effectively than ever before the requirements of practically any service condition. Enumerated here are the broad classifications of materials and alloys most frequently used, and in which many individual items of the complete Ladish lines are being produced. On following pages of this section is a more complete breakdown of these classifications showing the applicable code and standards designations. Working with both the prime material manufacturers and important users of special piping in all fields, the Ladish Co. constantly carries on research and metallurgical studies to produce fittings in an ever wider range of materials. Consultation on specific applications and special problems is always available. 227 YOUR SPECIFICATION FROM ANY FORGEABLE MATERIAL #### CARBON AND INTERMEDIATE ALLOY STEELS Carbon Steels which comprise the great proportion of forged and seamless welding fittings produced under A.S.T.M. specifications A181, A105, A106 and A234 are characterized by physical properties including strength, toughness and corrosion resistance for satisfactory operation under a wide range of temperature, pressure and chemical environments. In addition to rigid inspection of chemical composition within the specified ranges, Ladish exercises control over uniformity, homogeneity, ingot patterns, melting practice and austenitic grain size. Where welding is involved for installation, safeguards are maintained to insure weldability. Increasing the carbon content increases tensile strength—but when welding applications are required it is not desirable to have carbon above .35%. Alloy Steels—These steels are used in applications where carbon steel is not adequate for reasons of high or low temperature, corrosion, ultimate strength or creep strength. Specifying the correct alloy composition is dependent on the characteristics of the material being used and the application being considered. Chromium, Molybdenum and Nickel Alloy Steels—Chromium as an alloying agent is used primarily for increasing resistance to corrosion and oxidation. Adding Molybdenum promotes high-temperature or creep strength in steels and is effective in overcoming temper brittleness of chromium steels, while Nickel adds toughness at low temperatures. Alloys in this category usually range from 1 to 10 per cent Chromium, 0.4 to 1 per cent Molybdenum and 2 to 5 per cent Nickel in steels of medium and low carbon content. Various combinations of these elements are used to develop alloy steels possessing desired characteristics. In addition to the above alloys the following elements when used in combination with other alloying elements affect properties in varying degree. Manganese from .30 to 1.50 per cent improves the hot working properties and slightly increases creep strength up to 950° F. Silicon up to 2 per cent in combination with other alloying elements improves the creep and other properties of steel, except resistance to corrosion, in the temperature range of 950° F. to 1200° F. Copper increases the resistance of steel to atmospheric corrosion. #### HIGH ALLOY AND STAINLESS STEELS Chromium Stainless—Usually any Carbon steel containing 11.0 per cent or more of Chromium is considered Stainless. Such steels couple good resistance to certain types of corrosion and erosion with ability to withstand high temperature stress up to approximately 1200° F. Austenitic Stainless—Chromium-Nickel alloys, particularly of the 18-8 variety, are probably the most widely used of the Stainless steels for piping. These Austenitic Stainless steels have properties modified by the addition of Molybdenum, Columbium, Tantalum and Titanium to meet varying requirements. Their corrosion resistance, strength, ductility, lack of scaling at high temperatures and toughness under sub-zero conditions are generally higher than any other common ferrous alloy. Stainless steels meet to a unique degree the peculiar needs of many divergent industries such as processing, food, drug, petroleum, chemical and power. #### **ALUMINUM AND ALUMINUM ALLOYS** Pure Wrought Aluminum—Due to its peculiar combination of light weight, high strength and thermal conductivity, Aluminum is becoming increasingly popular as a piping material. It also exhibits good resistance to many corrosive chemicals and maintains the stability of many materials piped through it such as fatty acids, edible oils, paints, varnishes and lacquers. Not only is Aluminum highly non-contaminating, but where the metal is dissolved it forms non-toxic compounds with most food and drug substances. Aluminum Alloys—Considerable improvement in physical properties and stability in the presence of specific corrosives is obtained by alloying Aluminum with various elements such as Copper, Silicon, Manganese, Magnesium and Chromium. High purity Aluminum and certain widely used Aluminum alloys are amenable to certain types of heat treatment which serve to modify their properties and condition of strain in a direction favorable to improved performance under conditions of service and fabrication. #### COPPER, BRASSES AND BRONZES Wrought Copper is being used more extensively in piping applications due to its high resistance to many corrosive elements. In this form Deoxidized Copper is popular because of high workability and welding response. Arsenical Copper provides added resistance to certain specific corrosive agents. Brasses combine good hot working characteristics with high resistance to corrosive action of many sulphides, increasing as zinc content is raised. Good strength characteristics are exhibited by brasses in which copper content is maintained at levels of 60 to 70 per cent. Copper-SiliconManganese alloy (i.e., Everdur) combines the strength of mild steel with corrosion resistance of Copper. Bronzes—Modified by the addition of phosphorus as a deoxidant, Admiralty Bronze, Aluminum Bronze and some Red Brasses are particularly resistant to salt water attack. Aluminum Bronzes further possess high resistance to corrosive action of many acid solutions. Copper-Nickel alloys are becoming more frequently used where resistance to alkaline solutions is required. #### NICKEL, MONEL AND INCONEL Wrought Nickel—Stronger and more ductile than many structural steels, Nickel resists attack of more corrosives and is particularly useful in protecting the color, flavor, odor and purity of sensitive solutions. It has proven most successful in handling caustic compounds. Monel—This Nickel-Copper alloy combines high strength properties with unusual resistance against such industrial corrosives as dilute sulphuric, hydrochloric, hydrofluoric and phosphoric acids. It is also resistant to brine and caustic soda solutions. Incone I combines the corrosion resistance, strength and toughness characteristics of Nickel with the extra resistance to heat and oxidation of Chromium. It exhibits pronounced resistance to corrosion by many inorganic and organic compounds as well as many oxidizing acid and alkaline solutions. #### CONDENSED TABLE OF PIPING SPECIFICATIONS While not exhaustive, the following tabulation attempts to group the more commonly used material specifications for pipe and tubes, forgings and plates used in pipe and related installations. | MATERIAL
OR
ALLOY | OR ST | ICATION
INDARDS
NATION | GRADE
OR
Type | SYMBOL | NOMINAL COMPOSITION | MINIMUM
Physical
Requirements | |---|-----------------------------|------------------------------|---------------------|--------|---|---| | | | A53 | Α | | Low Carbon Steel, Refer to Specification for complete analysis | TS 48,000
YP 30,000
El. 2"35 to 21%
(Dependent upon wall thickness) | | CARBON | | AJJ | В | | Low Carbon Steel, Refer to Specification for complete analysis | TS 60,000
YP 35,000
EI. 2"30 to 18%
(Dependent upon wall thickness) | | STEELS | ASTM | A83 | Туре А | | 0.06-0.18% C, 0.27-0.63% Mn | Refer to ASTM specification | | 012220 | | **** | I | | 0.35% C max., 0.90% Mn max. | TS 60,000
YP 30,000
EI. 2"25%
Red. 38% | | | | A105 | П | | 0.35% C max., 0.90% Mn max. | TS 70,000
YP 36,000
EI. 2"-22%
Red. 30% | | CARBON STEI
FOR LOW
TEMPERATUR
SERVICE | Speci
for For
Fitting | fication
orged | | L-50F | 0.35% C max., 0.90% Mn
0.15-0.35% Si | TS 60,000
YP 30,000
EI. 2"25%
Red. 38%
Charpy15 ftlbs.
at minus 50° F. | | | | A106 | А | | 0.25% C max., 0.30-0.90% Mn | TS 48,000
YP 30,000
EI. 2" \{Longitudinal35 to 21 \%\}
(Transverse25 to 22.5 \%\}
(Dependent upon wall thickness) | | CARBON | ASTM | | В | | 0.30% C max., 0.35-1% Mn | TS 60,000
YP 35,000
El. 2" \{Longitudinal30 to 18 \%
(Transverse16.5 to 14.5 \%
(Dependent upon wall thickness) | | STEELS | | A120 | | , | Low Carbon Zinc Coated Steel, Refer to
Specification for complete analysis | Refer to ASTM specification | | | | A134 | | | Low Carbon Steel, Refer to Specification for complete analysis | Refer to ASTM specification | | | | A135 | Α | | Low Carbon Steel, Refer to Specification for complete analysis | TS 48,000
YP 30,000
El. 2"35 to 21%
(Dependent upon wall thickness) | | MATERIAL
OR
ALLOY | SPECIFICATION
OR STANDARDS
DESIGNATION | | GRADE
OR
Type | SYMBOL | NOMINAL COMPOSITION | MINIMUM
Physical
Requirements | | |---|---|------------------------|---------------------|--------|--|---|--| | | | A135 | В | | Low Carbon Steel, Refer to Specification for complete analysis | TS 60,000
YP 35,000
El. 2"-30 to 18%
(Dependent upon wall thickness) | | | | | A139 | А | | Low Carbon Steel, Refer to Specification for complete analysis | TS 48,000
YP 30,000
El. 2"35 to 21%
(Dependent upon wall thickness) | | | | | A139 | В | | Low Carbon Steel, Refer to Specification for complete analysis | TS 60,000
YP 35,000
El. 2"30 to 18%
(Dependent upon wall thickness) | | | | | | C45 | | 0.15% C max. | Refer to ASTM specification | | | | | A155 | C50 | | 0.20% C max. | Refer to ASTM specification | | | | | | C55 | | 0.25% C max. | Refer to ASTM specification | | | | | A178 | Type A | | 0.08-0.18% C max., 0.30-0.60% Mn | Refer to ASTM specification | | | | | A179 | | | 0.08-0.18% C, 0.30-0.60% Mn | Refer to ASTM specification | | | CARBON
Steels | ASTM | * 101 | ī | * | 0.35% C max., 0.90% Mn max. | TS 60,000
YP 30,000
EI. 2"22%
Red. 35% | | | | | A181 | п | | 0.35% C max., 0.90% Mn max. | TS 70,000
YP 36,000
El. 2"18%
Red. 24% | | | | | A192 | | | 0.08-0.18% C, 0.30-0.60% Mn | Refer to ASTM specification | | | | | | A210 | | | 0.35% C max., 0.80% Mn max. | TS 60,000
YP 37,000
El. 2"25 to 15%
(Dependent upon wall thickness) | | | | A212 | A | | 0.33% C max., 0.90% Mn max. | TS 65,000 to 77,000
YP 35,000
El. 2"24% | | | | | | В | | 0.35% C max., 0.15-0.30% Si | TS 70,000 to 82,000
YP 38,000
EI. 2"22% | | | | | A214 | | | 0.18% C max., 0.30-0.60% Mn | Refer to ASTM specification | | | | | A226 | | | 0.08-0.18% C, 0.30-0.60% Mn | Refer to ASTM specification | | | CARBON STEEL
FOR LOW
TEMPERATURE
SERVICE | Ladish
Specifi
for Sec
Weldi
Fittings | cation
amless
ng | | L-50F | 0.30% C max., 0.29-1.06% Mn
0.10-0.30% Si | TS 60,000
YP 35,000
EI. 2''30%
Charpy15 ftlbs.
at minus 50° F. | | | CARBON | ASTM | STM A285 | В | | 0.22% C max., 0.80% Mn max. | TS 50,000 to 60,000
YP 0.5 TS to 27,000 Min.
EI. 2" 1,500,000
TS % | | | STEELS | | | С | | 0.30% C max., 0.80% Mn max. | TS 55,000 to 65,000
YP 0.5 TS to 30,000 Min.
El. 2" 1,500,000 % | | | MATERIAL
OR
ALLOY | OR ST | FICATION
Andards
Ination | GRADE
OR
Type | SYMBOL | NOMINAL COMPOSITION | MINIMUM
PHYSICAL
REQUIREMENTS | | |-------------------------|-------|--------------------------------|---------------------|--------|-----------------------------|--|---| | | | | Α | | 0.30-0.90% Mn | TS 48,000
YP 30,000
El. 2"-35 to 21%
(Dependent upon wall thickness) | | | CARBON
STEELS | API | 5L | В | | 0.30% C max., 0.35-1.50% Mn | TS 60,000
YP 35,000
El. 2"30 to 18%
(Dependent upon wall thickness) | | | 315572 | | | c | | 0.35-1.50% Mn | TS 75,000
YP 40,000
EI. 2"20% | | | | | 5LX | X42 | | 0.33% C max., 1.28% Mn max. | TS 60,000
YP 42,000
EI. 2"20% | | | | | A335 | Si-Mo | P15 | 1.15-1.65% Si, 0.50% Mo | TS 60,000 YP 30,000 EI. 2"{Longitudinal30 to 18% (Transverse20 to 18% (Dependent upon wall thickness) | | | | ASTM | A182 | С-Мо | F1 | 0.20-0.30% C max., 0.50% Mo | TS 70,000
YP 40,000
EI. 2''-25%
Red. 35% | | | | | Δ 904 | A204 | Α | | 0.25% C max., 0.50% Mo | TS 65,000 to 77,000
YP 37,000
El. 2"25% | | | | 71204 | В | | 0.27% C max., 0.50% Mo | TS 70,000 to 85,000
YP 40,000
EI. 2" 23% | | | CARBON- | | A335 | С-Мо | P1 | 0.10-0.20% C, 0.50% Mo | TS 55,000 YP 30,000 EI. 2"\{\text{Longitudinal30 to 18%}\text{Transverse20 to 18%}\text{(Dependent upon wall thickness)} | | | MOLYBDENUM
STEELS | | A209 | T1 | | 0.10-0.20% C, 0.50% Mo | TS 55,000
YP 30,000
El. 2"30 to 18%
(Dependent upon wall thickness) | | | | | | T1 a | | 0.15-0.25% C, 0.50% Mo | TS 60,000
YP 32,000
EI. 2"30 to 18%
(Dependent upon wall thickness) | | | | | | Т1Ь | | 0.14% C max., 0.50% Mo | TS 53,000
YP 28,000
EI. 2"30 to 18%
(Dependent upon wall thickness) | | | | | A250 | T1 | | 0.10-0.20% C, 0.50% Mo | TS 55,000
YP 30,000
EI. 2"30 to 18%
(Dependent upon wall thickness) | | | | | | T1 a | | 0.15-0.25% C, 0.50% Mo | TS 60,000
YP 32,000
EI. 2"30 to 18%
(Dependent upon wall thickness) | | | | | | T16 | | 0.14% C max., 0.50% Mo | TS 53,000
YP 28,000
El. 2"30 to 18%
(Dependent upon wall thickness) | | | MATERIAL
OR
ALLOY | SPECIFI
OR STAI
DESIGN | NDARDS | GRADE
OR
TYPE | SYMBOL | NOMINAL COMPOSITION | MINIMUM
PHYSICAL
REQUIREMENTS | | | | | | | | | | | |---|--|------------------------|---------------------|----------|--|--|---|--|--|--|-------------------|-----|---|--|-------------------|--| | CHROMIUM
COPPER
NICKEL
ALUMINUM | Ladish
Specifi
for Sec
Weldii
Fitting: | cation
amless
ng | | L-150F | 0.12% C max., 0.65-0.90% Mn,
.020% P max., .020% S max.,
0.15-0.30% Si, 0.65-0.90% Cr,
0.45-0.65% Cu, 0.70-0.90% Ni,
0.10-0.25% Al | TS 60,000
YP 35,000
El. 2''30%
Charpy 15 ftlbs.
at minus 150° F. | | | | | | | | | | | | STEELS
FOR LOW
TEMPERATURE
SERVICE | Ladish
Specification
for Forged
Fittings
and Flanges | | | L-150F | 0.12% C max., 0.65-0.90% Mn,
.020% P max., .020% S max.,
0.15-0.30% Si, 0.65-0.90% Cr,
0.45-0.65% Cu, 0.70-0.90% Ni,
0.10-0.25% Al | TS 60,000
YP 30,000
El. 2"25%
Charpy15 ftlbs.
at minus 150° F. | | | | | | | | | | | | | | | Cr-Mo | Р3 | 1.75% Cr, 0.75% Mo | TS 60,000
YP 30,000
El. 2"\[Longitudinal30 to 18%\]
(Dependent upon wall thickness) | | | | | | | | | | | | | | | Cr-Mo | РЗЬ | 2% Cr, 0.50% Mo | TS 60,000
YP 30,000
EI. 2"\left\[\text{Longitudinal30 to 18\%} \\ \text{(Dependent upon wall thickness)} \] | | | | | | | | | | | | | | A335 | | | | | | | | | | | 4-6% Cr | P5 | 4-6% Cr, 0.50% Mo | TS 60,000
YP 30,000
EI. 2" \{Longitudinal30 to 18\%
(Dependent upon wall thickness) | | | | | 4-6% Cr-
Si-Mo | P5b | 4-6% Cr, 1-2% Si, 0.50% Mo | TS 60,000
YP 30,000
EI. 2"{Longitudinal30 to 18%
(Transverse20 to 18%
(Dependent upon wall thickness) | | | | | | | | | | | | CHROMIUM-
MOLYBDENUM | | | - | | | | | | | | 4-6% Cr-
Mo-Ti | P5c | 4-6% Cr, 0.50% Mo, Ti or Cb
Stabilized | TS 60,000
YP 30,000
EI. 2"{Longitudinal—30 to 18%
(Dependent upon wall thickness) | | | | and
CHROMIUM-
VANADIUM
STEELS | ASTM | | | Cr-Si-Mo | P11 | 1.25% Cr, 0.50% Mo, 0.50-1% Si | TS 60,000
YP 30,000
EI. 2"{Longitudinal30 to 18%
(Transverse20 to 18%
(Dependent upon wall thickness) | | | | | | | | | | | | | | | | 7% Cr | P7 | 7% Cr, 0.50% Mo | TS 60,000
YP 30,000
El. 2"{Longitudinal30 to 18%
Transverse20 to 18%
(Dependent upon wall thickness) | | | | | | | | | | | | | | 9% Cr | P9 | 9% Cr, 1% Mo | TS 60,000
YP 30,000
EI. 2"\Longitudinal30 to 18%
(Transverse20 to 18%
(Dependent upon wall thickness) | | | | | | | | | | | | | | 1% Cr
1%% Mo | F12 | 1% Cr, 0.50% Mo | TS 70,000
YP 40,000
El. 2"20%
Red. 30% | | | | | | | | | | | | | | A182 | 4-6% Cr | F5 | 4-6% Cr, 0.50% Mo | TS 90,000
YP 65,000
EI. 2"22%
Red. 50% | | | | | | | | | | | | | | | 13% Cr | F6 | 13% Cr, 1% Si max. | TS 85,000
YP 55,000
EI. 2"25%
Red. 60% | | | | | | | | | | | | MATERIAL
OR
Alloy | OR STA | ICATION
NDARDS
NATION | GRADE
OR
Type | SYMBOL | NOMINAL COMPOSITION | MINIMUM
PHYSICAL
REQUIREMENTS | | | | | | |---------------------------------|--------|-----------------------------|---------------------|-----------|------------------------------|--|--|--|--|-----------------|--| | V | | A182 | 9% Cr | F9 | 9% Cr, 1% Mo | TS 100,000
YP 70,000
EI. 2''20%
Red. 40% | | | | | | | | | 73102 | Cr-Mo | F22 | 2.25% Cr, 1% Mo. | TS 70,000
YP 40,000
EI. 2"20%
Red. 30% | | | | | | | | | | Cr-Mo | Т3 | 1.75% Cr, 0.75% Mo | TS 60,000
YP 25,000
El. 2''30 to 18%
(Dependent upon wall thickness) | | | | | | | | | Ī | Cr-Mo | T5 | 4-6% Cr, 0.50% Mo | TS 60,000
YP 25,000
El. 2"30 to 18%
(Dependent upon wall thickness) | | | | | | | | | | 7% Cr | T7 | 7% Cr, 0.50% Mo, 0.50-1% Si | TS 60,000
YP 25,000
EI. 2''30 to 18%
(Dependent upon wall thickness) | | | | | | | | | M A213 | 9% Cr | Т9 | 9% Cr, 1% Mo, 0.50-1% Si | TS 60,000
YP 25,000
EI. 2"30 to 18%
(Dependent upon wall thickness) | | | | | | | CHROMIUM-
MOLYBDENUM
and | | | Cr-Si-Mo | T11 | 1.25% Cr, 0.50% Mo, 0.75% Si | TS 60,000
YP 25,000
El. 2"30 to 18%
(Dependent upon wall thickness) | | | | | | | CHROMIUM-
VANADIUM
STEELS | ASTM | | | | | | A213 | Cr-Mo | T12 | 1% Cr, 0.50% Mo | TS 60,000
YP 25,000
El. 2"30 to 18%
(Dependent upon wall thickness) | | | | | | | Cr-Mo | ТЗЬ | 2% Cr, 0.50% Mo | TS 60,000
YP 25,000
El. 2"30 to 18%
(Dependent upon wall thickness) | | | | | | | | | Cr-Mo-Ti | T5c | 4-6% Cr, 0.50% Mo, Ti Stabilized | TS 60,000
YP 25,000
El. 2"30 to 18%
(Dependent upon wall thickness) | | | | | | | | | | | | Cr-Va | T17 | 1% Cr, 0.15% Va | TS 60,000
YP 25,000
El. 2"30 to 18%
(Dependent upon wall thickness) | | | | | | | | | Cr-Mo | T21 | 3% Cr, 0.90% Mo | TS 60,000
YP 25,000
El. 2"30 to 18%
(Dependent upon wall thickness) | | | | | | | | Cr-Mo | T22 | 2.25% Cr, 1% Mo | TS 60,000
YP 25,000
El. 2"30 to 18%
(Dependent upon wall thickness) | | | | | | | | | A335 | Cr-Mo | P2 | 0.60% Cr, 0.60% Mo | TS 55,000
YP 30,000
EI. 2"{Longitudinal30 to 24%
Transverse20 to 18%
(Dependent upon wall thickness) | | | | | | | MATERIAL
OR
ALLOY | SPECIFI
OR STAI
DESIGN | NDARDS | GRADE
OR
Type | SYMBOL | NOMINAL COMPOSITION | MINIMUM
PHYSICAL
REQUIREMENTS | | | | | | | | | | | | |---|------------------------------|--------|---------------------|--------|--|---|--|--|--|--|--|--|--|-------|-------|---------------|---| | CHROMIUM-
MOLYBDENUM
and
CHROMIUM-
VANADIUM
STEELS | ASTM | A335 | Cr-Mo | P12 | 1% Cr, 0.50% Mo | TS 60,000 YP 30,000 EI. 2"{Longitudinal30 to 18% (Transverse20 to 18% (Dependent upon wall thickness) | | | | | | | | | | | | | CARBON-NICKEL | AISI | 2317 | 3½% Ni | 2317 | 0.15-0.20% C, 3.25-3.75% Ni | Refer to AISI specification | | | | | | | | | | | | | STEELS | 7,101 | 2517 | 5% Ni | 2517 | 0.15-0.20% C, 4.75-5.25% Ni | Refer to AISI specification | | | | | | | | | | | | | CHROMIUM- | | A335 | Si-Mo | P15 | 1.15-1.65% Si, 0.50% Mo | TS 60,000
YP 30,000
EI. 2"{Longitudinal30 to 18%
(Transverse20 to 18%
(Dependent upon wall thickness) | | | | | | | | | | | | | SILICON-
MOLYBDENUM
STEELS | ASTM | A213 - | Cr-Si-Mo | T11 | 1.25% Cr, 0.75% Si, 0.50% Mo | TS 60,000
YP 25,000
El. 2"30 to 18%
(Dependent upon wall thickness) | | | | | | | | | | | | | | | AZI3 - | Cr-Si-Mo | T56 | 4-6% Cr, 1-2% Si, 0.50% Mo | TS 60,000
YP 25,000
El. 2''30 to 18%
(Dependent upon wall thickness) | | | | | | | | | | | | | WROUGHT IRON | ASTM | A72 | | | Refer to Specification for complete analysis | TS 40,000
YP 24,000
El. 8"9% | | | | | | | | | | | | | | API | 5L | | | Refer to Specification for complete anaylsis | Refer to API specification | | | | | | | | | | | | | | ASTM | | Туре 410 | TP410 | 11.50-13.50% Cr | TS 60,000
YP 30,000
EI. 2"20% | | | | | | | | | | | | | STAINLESS
ALL CHROMIUM | | A268 | Туре 430 | TP430 | 14-18% Cr | TS 60,000
YP 35,000
El. 2''20% | | | | | | | | | | | | | | | | Туре 446 | TP446 | 23-30% Cr | TS 70,000
YP 40,000
El. 2''18% | | | | | | | | | | | | | | ASTM | | | | | | | | | | | | | Cr-Ni | TP304 | 18% Cr, 8% Ni | TS 75,000
YP 30,000
El. 2"\{Longitudinal35 to 21%\
Transverse25 to 22.5%\
(Dependent upon wall thickness) | | STAINLESS-
NICKEL
CHROMIUM | | A312 | Cr-Ni-Ti | TP321 | 18% Cr, 10% Ni, Ti Stabilized | TS 75,000
YP 30,000
El. 2"\{\text{Longitudinal35 to 21 \%}\text{Transverse25 to 22.5\%}\text{(Dependent upon wall thickness)} | | | | | | | | | | | | | | | | Cr-Ni-Cb | TP347 | 18% Cr, 10% Ni, Cb Stabilized | TS 75,000
YP 30,000
EI. 2"{Longitudinal35 to 21%
(Transverse25 to 22.5%
(Dependent upon wall thickness) | | | | | | | | | | | | | | | A182 | Cr-Ni | F304 | 18% Cr, 8% Ni | TS 75,000
YP 30,000
El. 2"45%
Red. 50% | | | | | | | | | | | | | MATERIAL
OR
ALLOY | | CATION
NDARDS
NATION | GRADE
OR
Type | SYMBOL | NOMINAL COMPOSITION | MINIMUM
PHYSICAL
REQUIREMENTS | | | | | | | |-------------------------|------|------------------------------|---------------------|----------------------------------|--|---|--|--|--|------|--|---| | | | A182 | Cr-Ni-Cb | F347 | 18% Cr, 10% Ni, Cb Stabilized | TS 75,000
YP 30,000
El. 2"45%
Red. 50% | | | | | | | | | | A102 · | Cr-Ni-Mo | F316 | 18% Cr, 12% Ni, 2-3% Mo | TS 75,000
YP 30,000
EI. 2"45%
Red. 50% | | | | | | | | STAINLESS-
NICKEL | ASTM | | Cr-Ni | TP304 | 18% Cr, 8% N | TS 75,000
YP 30,000
El. 2"35 to 21%
(Dependent upon wall thickness) | | | | | | | | CHROMIUM | AJIM | A213 | Cr-Ni-Cb | TP347 | 18% Cr, 10% Ni, Cb Stabilized | TS 75,000
YP 30,000
El. 2"35 to 21%
(Dependent upon wall thickness) | | | | | | | | | | A312 | Cr-Ni-Mo | TP316 | 18% Cr, 12% Ni, 2-3% Mo | TS 75,000
YP 30,000
El. 2"35 to 21%
(Dependent upon wall thickness) | | | | | | | | | | | Cr-Ni-Ti | TP321 | 18% Cr, 10% Ni, Ti Stabilized | TS 75,000
YP 30,000
El. 2"35 to 21%
(Dependent upon wall thickness) | | | | | | | | | | B221
B209
B210
B221 | 2S
990A | 2SO | 0.20% Cu, 0.10% Mn, 0.10% Zn,
balance Aluminum | TS 15,500 max.
El. 4 × Diam25% | | | | | | | | | | | | 2SF + | | TS 13,000 to 17,000 | | | | | | | | | | | 3S
MIA | 3SO 1-1.50% Mn, balance Aluminum | TS 19,000 max.
El. 2"18 to 23%
(Dependent upon wall thickness) | | | | | | | | | | | | | 3SF ◆ | | TS 16,000 to 21,000 | | | | | | | | | | B210
B221 | | 24SO | | TS 35,000 max.
YS 19,000 max.
El. 4 × Diam12% | | | | | | | | WROUGHT | A. | | 24S
CG42A | 24ST4 | 1.20-1.80% Mg, 3.80-4.90% Cu,
balance Aluminum | TS 57,000 to 70,000 (Dependent upon wall thickness) YS 42,000 to 52,000 (Dependent upon wall thickness) El. 4 × Diam12 to 10% (Dependent upon wall thickness) | | | | | | | | ALUMINUM
ALLOYS | ASTM | | | | | | | | | 25SO | | TS 30,000 max.
YS 18,000 max.
El. 4 × Diam12% | | | | B221 | 25S
CS41 A | 25ST6 | 0.40-1.20% Mn, 3.90-5% Cu,
balance Aluminum | TS 60,000 to 68,000 (Dependent upon wall thickness) YS 53,000 to 60,000 (Dependent upon wall thickness) EI. $4 \times \text{Diam}7\%$ | | | | | | | | | | B210 | 52S
GR20A | 52SO | 2.20-2.80% Mg, balance Aluminum | TS 35,000 max. | | | | | | | | | | | GRZUA | 52SF ◆ | 349 (617) | TS 35,000 nominal | | | | | | | | | | B209
B210
B221 | 61S
GS11A | 61SO | | TS 22,000 max.
YS 16,000 max.
EI. 2"14 to 18% | | | | | | | | | | | | 61SF + | 0.15-0.40% Cu, 0.70% Fe,
0.15-0.35% Cr, balance Aluminum | TS 30,000 nominal YS 16,000 nominal El. 4×Diam16% nominal | | | | | | | | | | | | 61ST6 | | TS 38,000
YS 35,000
El. 2"6 to 14% | | | | | | | | | MATERIAL
OR
ALLOY | SPECIFIC
OR STAN
DESIGNA | DARDS | GRADE
OR
Type | SYMBOL | NOMINAL COMPOSITION | MINIMUM
PHYSICAL
REQUIREMENTS | |--|------------------------------|--------------------------------|-----------|---------------------|-------------------------|--|---| | | | | | Туре В | Туре В | 76-79% Cu, 1.80-2.50% AI, 0.02-0.10% As | | | | ALUMINUM-
COPPER ALLOYS ‡ | ASTM | B111 | Туре С | Туре С | 76-79% Cu, 1.80-2.50% AI,
0.02-0.10% Sb | | | | | | | Type D | Type D | 76-79% Cu, 1.80-2.50% AI, 0.02-0.10% P | | | | | | - | Arsenical | | 99.40% Cu Min., 0.15-0.50% As | Refer to ASTM specification | | | | | B13 | Non-
Arsenical | | 99.90% Cu Min. | Refer to ASTM specification | | | COPPER | ASTM | B42 | Annealed | | 99.9% Cu, 0.04% P | Refer to ASTM specification | | | | | V-CORNERS | Type DLP | | 99.9% Cu Min., 0.004-0.012% P | Refer to ASTM specification | | | | | B75 | Type DHP | | 99.9% Cu Min., 0.015-0.040% P | Refer to ASTM specification | | | BRASS-Red Brass | ASTM | B43 | | Red Brass | 84-86% Cu, 0.06% Pb max.,
0.05% Fe max. | Refer to ASTM specification | | | FORGING BRASS | ASTM | B124 | Alloy No. 5 | Frg. Brass | 59% Cu, 38% Zn, 0.50% Pb, 1.0% Sn | Refer to ASTM specification | | | EVERDUR 1010 | | | | Everdur | 96% Cu, 3% Si, 1% Mn | | | | | ASTM | B160 | | Nickel | 99% Ni Min | TS 60,000 to 80,000
YS 15,000 to 60,000
EI. 2"35 to 10% | | | NICKEL | | B161 | | | | TS 55,000 to 70,000
YS 15,000 to 50,000
El. 2"40 to 10% | | | | ASTM | B164 | Class A | - Monel | 63-70% Ni, 24-31% Cu | TS 70,000 to 110,000
YS 25,000 to 85,000
El. 2''35 to 10% | | | MONEL | | B165 | | | 03-70% NI, 24-31% Cu | TS 70,000 to 85,000
YS 28,000 to 65,000
El. 2"35 to 10% | | | | £1 | B166 | | | 72% Ni Min., 14-17% Cr, 6-10% Fe | TS 80,000 to 120,000
YS 30,000 to 90,000
El. 2"35 to 7% | | | INCONEL | ASTM | B167 | | Inconel | 72% NI Min., 14-17% CI, 0-10% TE | TS 80,000
YS 30,000
EI. 2"35% | | | INCONEL X† | | | | Inconel X | Nickel Base, 15% Cr, 7% Fe, 2.50%
Ti, 1% (Cb + Ta), 0.70% Al | | | | HASTELLOY B‡ | | | | Hastelloy
B | Nickel Base, 28% Mo, 5.50% Fe | <u> </u> | | | COR-TEN†† | | | | Cor-Ten | 0.12% C max., 0.20-0.50% Mn,
0.05% S max., 0.07-0.15% P,
0.25-0.55% Cu, 0.25-0.75% Si,
0.50-1.25% Cr, 0.65% Ni max. | TS 70,000 nominal
YP 50,000 nominal
El. 2"22% nominal | | | YOLOY++ | | | | Yoloy | 0.15% C max., 0.60% Mn max.,
0.75-1.25% Cu, 1.50-2% Ni,
0.05-1% P, 0.05% S max. | TS 75,000 nominal
YP 55,000 nominal
El. 2"22% nominal | | | TRI-TEN++ | | | | Tri-Ten | 0.25% C max., 1.30% Mn max.,
0.045% P max., 0.05% S max.,
0.10-0.30% Si, 0.30-0.60% Cu,
0.50-1% Ni | TS 70,000 nominal
YP 50,000 nominal
El. 2''22% nominal | | | CARBON
MANGANESE | | | | | 0.21-0.28% C, 1.00-1.35% Mn,
0.15-0.30% Si | TS 80,000 nominal
YP 52,000 nominal
El. 2"25% nominal | | | | | | | h Hagt resistant alloy. | | | ^{††} Trade names for high strength structural steels. Other comparable grades are manufactured by various steel producers. [†] Heat-resistant alloy. ‡ Corrosion-resistant alloy. #### LADISH CATALOG NO. 55 Printed in the United States Material in this publication that has been extracted from the indicated ASA Standards is used with the permission of the publisher, the American Society of Mechanical Engineers, 29 West 39th Street, New York 18, N. Y.